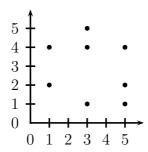

Partiel de:

Semestre 1 (Decembre 09)

La calculatrice et la table de la loi normale sont autorisés, ainsi qu'une fiche 10×15 cm. Ce sujet contient 40 affirmations justes, et 40 fausses. Vous aurez +1 à chaque valeur de vérité trouvée, -1 à chaque erreur (et 0 en absence de réponse). Les notes seront ajustées à l'intervalle [0; 20] (les notes négatives auront 0).

- Q. 1. Soit \mathcal{R} une relation binaire définie sur un ensemble E, de graphe G. \mathcal{R} est dite réflexive si, lorsque x est en relation avec y, alors y est en relation avec x. L'assertion proposée est vraie ou fausse?
- Q. 2. Soit t_1 et t_2 deux termes exprimés dans une algèbre de Boole munie des opérateurs classiques +, . et $t_1 = t_2 = t_3 = t_4 =$
- Q. 3. Soit \mathcal{R} une relation binaire. Pour tout x de E, il existe au plus un y de F tel que $x\mathcal{R}y$. L'assertion proposée est vraie ou fausse?
- Q. 4. Une application est une relation fonctionnelle telle que tout élément de l'ensemble de départ possède au moins une image. L'assertion proposée est vraie ou fausse ?
 - Q. 5. Une application est une relation binaire. L'assertion proposée est vraie ou fausse?
- Q. 6. Etant donnée la relation \mathcal{R} dans $C = \{1, 2, 3, 4, 5\}$ définie par les points figurant dans le diagramme cartésien :

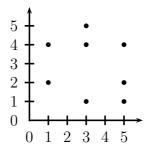
Le domaine de \mathcal{R} est-il $\{1, 2, 3, 4, 5\}$?


- Q. 7. $\sqrt{ }: \mathbb{R}^+ \longrightarrow \mathbb{R}$ est surjective. L'assertion proposée est vraie ou fausse?
- Q. 8. Soit \mathcal{R} une relation binaire définie sur un ensemble E, de graphe G. \mathcal{R} est dite transitive si $\forall x \in E, x\mathcal{R}x$. L'assertion proposée est vraie ou fausse ?
- Q. 9. Les relations d'ordre sont les relations réflexive, symétrique et transitive. L'assertion proposée est vraie ou fausse ?
- Q. 10. Soit \mathcal{R} une relation binaire définie sur un ensemble E, de graphe G. \mathcal{R} est dite réflexive lorsque, si x est en relation avec y, et si y l'est avec z, alors x est en relation avec z. L'assertion proposée est vraie ou fausse?
- Q. 11. Soit R la relation dans $A = \{1, 2, 3, 4\}$ définie par $R = \{(1, 3), (1, 4), (3, 2), (3, 3), (3, 4), \}$. A-t-on $R^{-1} = \{(1, 3), (1, 4), (3, 2), (3, 3), (3, 4), (1, 3), (1, 4), (3, 2), (3, 3), (3, 4), \}$?
- Q. 12. Etant donnée la relation \mathcal{R} dans $C = \{1, 2, 3, 4, 5\}$ définie par les points figurant dans le diagramme cartésien :

Le domaine de \mathcal{R} est-il $\{1, 3, 5\}$?

- Q. 13. Soit \mathcal{R} une relation binaire. $\forall x, x \mathcal{R} x$. L'assertion proposée est vraie ou fausse?
- Q. 14. Soit \mathcal{R} une relation binaire définie sur un ensemble E, de graphe G. \mathcal{R} est dite réflexive si, lorsque x est en relation avec y, alors y est en relation avec x. L'assertion proposée est vraie ou fausse?
 - Q. 15. est une relation d'ordre dans Z. L'assertion proposée est vraie ou fausse?
 - Q. 16. (\mathbb{R}, \leq) est un ensemble ordonné. L'assertion proposée est vraie ou fausse?
- Q. 17. Les relations d'ordre sont les relations symétrique, antisymétrique et transitive. L'assertion proposée est vraie ou fausse ?

- Q. 18. Une application est une relation binaire. L'assertion proposée est vraie ou fausse?
- Q. 19. $(\mathbb{N}, |)$ est un ensemble ordonné. L'assertion proposée est vraie ou fausse?
- Q. 20. $\sin : \mathbb{R} \longrightarrow [-1, 1]$ est injective. L'assertion proposée est vraie ou fausse?
- Q. 21. $\mathcal{R} = \{(x,y) \in \mathbb{R}^2, xy = 1\}$ est une relation fonctionnelle. L'assertion proposée est vraie ou fausse?
- Q. 22. Soit \mathcal{R} une relation binaire définie sur un ensemble E, de graphe G. \mathcal{R} est dite antisymétrique si $\forall x \in E, (x, x) \in G$. L'assertion proposée est vraie ou fausse ?
- Q. 23. Dans une algèbre de Boole munie des opérateurs classiques +, . et $\overline{}$, on considère l'expression $E = \overline{a(a+b)(a+c)(a+d)(a+e)}$. La version la plus réduite de E est \overline{abcde} . L'assertion proposée est vraie ou fausse?
 - Q. 24. $(\mathbb{N}^*, |)$ est un ensemble ordonné. L'assertion proposée est vraie ou fausse?
- Q. 25. Etant donnée la relation \mathcal{R} dans $C=\{1,2,3,4,5\}$ définie par les points figurant dans le diagramme cartésien :

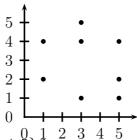


On propose les affirmations suivantes :

- 1. $1\mathcal{R}4$;
- $2.2\mathcal{R}5;$
- $3.3\mathcal{R}1;$
- 4. $5\mathcal{R}3$.

Toutes les relations sont-elles vraies?

- Q. 26. Dans une algèbre de Boole munie des opérateurs classiques +, . et , on considère l'expression $E = \overline{a}(a+b)(a+c)(a+d)(a+e)$. La version la plus réduite de E est 1. L'assertion proposée est vraie ou fausse ?
- Q. 27. Etant donnée la relation \mathcal{R} dans $C = \{1, 2, 3, 4, 5\}$ définie par les points figurant dans le diagramme cartésien :


On propose les affirmations suivantes :

- 1. $1\mathcal{R}4$;
- $2.2\mathcal{R}5;$
- $3.3\mathcal{R}1$:
- 4. $5\mathcal{R}3$.

L'item 4 est-il toujours faux?

- Q. 28. $xRy \iff x$ et y ont le même reste dans une division par 2 » est une relation d'ordre sur les entiers strictement positifs. L'assertion proposée est vraie ou fausse ?
- Q. 29. Une application de E dans F est telle que $\forall x \in E$, il existe un unique élément $y \in F$ en relation avec x. L'assertion proposée est vraie ou fausse?
- Q. 30. Soit \mathcal{R} une relation binaire définie sur un ensemble E, de graphe G. \mathcal{R} est dite réflexive si $\forall x \in E, x\mathcal{R}x$. L'assertion proposée est vraie ou fausse?
 - Q. 31. $\mathcal{R} = \{(x,y) \in \mathbb{R}^2, y-x+2=0\}$ est une relation binaire. L'assertion proposée est vraie ou fausse ?
 - Q. 32. $\sin : \mathbb{R} \longrightarrow [-1, 1]$ est injective. L'assertion proposée est vraie ou fausse?

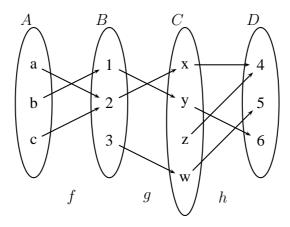
- Q. 33. Soit \mathcal{R} une relation binaire. Le graphe de \mathcal{R} est symétrique par rapport à la diagonale. L'assertion proposée est vraie ou fausse?
- Q. 34. Soit \mathcal{R} une relation binaire définie sur un ensemble E, de graphe G. \mathcal{R} est dite réflexive si la diagonale de E^2 est incluse dans G. L'assertion proposée est vraie ou fausse?
- Q. 35. Les relations d'ordre sont les relations réflexive, symétrique et transitive. L'assertion proposée est vraie ou fausse ?
- Q. 36. Une application injective est une application telle que tout élément de l'ensemble d'arrivée possède au plus un antécédent. L'assertion proposée est vraie ou fausse ?
- Q. 37. Soit \mathcal{R} une relation binaire définie sur un ensemble E, de graphe G. \mathcal{R} est dite transitive lorsque, si x est en relation avec y, et si y l'est avec z, alors x est en relation avec z. L'assertion proposée est vraie ou fausse?
- Q. 38. Soit \mathcal{R} une relation binaire définie sur un ensemble E, de graphe G. \mathcal{R} est dite transitive si la diagonale de E^2 est incluse dans G. L'assertion proposée est vraie ou fausse?
- Q. 39. Une application surjective est une application telle que tout élément de l'ensemble d'arrivée possède au moins un antécédent. L'assertion proposée est vraie ou fausse ?
- Q. 40. Etant donnée la relation \mathcal{R} dans $C = \{1, 2, 3, 4, 5\}$ définie par les points figurant dans le diagramme cartésien :

Le domaine de \mathcal{R} est-il $\{1, 3, 5\} \times \{1, 2, 4, 5\}$?

- Q. 41. $\sin : \mathbb{R} \longrightarrow [-1, 1]$ est surjective. L'assertion proposée est vraie ou fausse?
- Q. 42. Une application de E dans F est telle que $\forall x \in E$, il existe un unique élément $y \in F$ en relation avec x. L'assertion proposée est vraie ou fausse?
- Q. 43. Les applications bijectives sont les applications injectives et surjectives. L'assertion proposée est vraie ou fausse ?
- Q. 44. On a défini une relation binaire \mathcal{R} entre deux ensembles E et F lorsqu'on s'est donné une partie de $E \times F$. L'assertion proposée est vraie ou fausse?
 - Q. 45. Soit \mathcal{R} une relation binaire. $\forall x, x \mathcal{R} x$. L'assertion proposée est vraie ou fausse?
- Q. 46. Soit \mathcal{R} une relation binaire définie sur un ensemble E, de graphe G. \mathcal{R} est dite transitive quand tout élément est en relation avec lui-même. L'assertion proposée est vraie ou fausse?
- Q. 47. Soit \mathcal{R} une relation binaire définie sur un ensemble E, de graphe G. \mathcal{R} est dite transitive si, lorsque x est en relation avec y, alors y est en relation avec x. L'assertion proposée est vraie ou fausse?
- Q. 48. « xRy si et seulement si x+y est pair » est une relation d'ordre sur l'ensemble des entiers. L'assertion proposée est vraie ou fausse ?
 - Q. 49. $\{(x,y) \in \mathbb{R}^2, |y| = \sqrt{x}\}$ est une relation fonctionnelle. L'assertion proposée est vraie ou fausse?
 - Q. 50. \leq est une relation d'ordre dans \mathbb{R} . L'assertion proposée est vraie ou fausse?
 - Q. 51. Soit $\mathcal R$ une relation binaire définie sur un ensemble E, de graphe G. $\mathcal R$ est dite antisymétrique si

$$\forall (x,y,z) \in E^3, (x,y) \in G \text{ et } (y,z) \in G \Longrightarrow (x,z) \in G$$

. L'assertion proposée est vraie ou fausse?


- Q. 52. Soit R la relation dans $A = \{1, 2, 3, 4\}$ définie par $R = \{(1, 3), (1, 4), (3, 2), (3, 3), (3, 4), \}$. A-t-on $R^{-1} = \{(3, 1), (4, 1), (2, 3), (3, 3), (4, 3)\}$?
 - Q. 53. $(\mathbb{Z}, |)$ est un ensemble ordonné. L'assertion proposée est vraie ou fausse?
- Q. 54. On considère 4 variables booléennes a, b, c et d. Le + est le symbole du OU logique non exclusif, le . est le symbole du ET logique et $\overline{}$ est la négation logique. L'expression $\overline{a} + \overline{b} + c + d$ vaut 1 si et seulement c.d vaut 1. L'assertion proposée est vraie ou fausse ?
 - Q. 55. | est une relation d'ordre dans \mathbb{N}^* . L'assertion proposée est vraie ou fausse?

- Q. 56. On considère 4 variables booléennes a, b, c et d. Le + est le symbole du OU logique non exclusif, le . est le symbole du ET logique et est la négation logique. L'égalité a+b+c+d=0 est établie si et seulement si a=b=c=d=0. L'assertion proposée est vraie ou fausse ?
 - Q. 57. Soit \mathcal{R} une relation binaire définie sur un ensemble E, de graphe G. \mathcal{R} est dite transitive si

$$\forall (x, y, z) \in E^3, x \mathcal{R} y \text{ et } y \mathcal{R} z \Longrightarrow x \mathcal{R} z$$

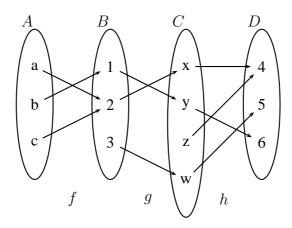
. L'assertion proposée est vraie ou fausse?

Q. 58. Etant données les fonctions $f:A\to B,\,g:B\to C$ et $h:C\to D$ définies par le diagramme suivants

f est-elle ni injective ni surjective?

Q. 59. $(\mathbb{N}, |)$ est un ensemble ordonné. L'assertion proposée est vraie ou fausse?

Q. 60. $xRy \iff x \text{ et } y \text{ ont le même reste dans une division par 2} \Rightarrow \text{ est une relation d'ordre sur les entiers strictement positifs. L'assertion proposée est vraie ou fausse?}$


Q. 61. Une application injective est une application telle que tout élément de l'ensemble d'arrivée possède exactement un antécédent. L'assertion proposée est vraie ou fausse ?

Q. 62. Les applications bijectives sont les applications injectives et surjectives. L'assertion proposée est vraie ou fausse ?

Q. 63. Si $f: E \longrightarrow F$ est bijective, alors tout élément de E possède exactement une image dans F. L'assertion proposée est vraie ou fausse?

Q. 64. $\sin:[0,\pi] \longrightarrow [-1,1]$ est surjective. L'assertion proposée est vraie ou fausse?

Q. 65. Etant données les fonctions $f:A\to B, g:B\to C$ et $h:C\to D$ définies par le diagramme suivants

 $h \circ g$ est-elle surjective?

Q. 66. Si $f: E \longrightarrow F$ est bijective, alors tout élément de F possède exactement un antécédant dans E. L'assertion proposée est vraie ou fausse?

- Q. 67. Soit \mathcal{R} une relation binaire définie sur un ensemble E, de graphe G. \mathcal{R} est dite réflexive quand tout élément est en relation avec lui-même. L'assertion proposée est vraie ou fausse?
- Q. 68. Soit \mathcal{R} une relation binaire. Il est possible d'avoir $x\mathcal{R}y$ sans avoir $y\mathcal{R}x$. L'assertion proposée est vraie ou fausse?
- Q. 69. Soit \mathcal{R} une relation binaire définie sur un ensemble E, de graphe G. \mathcal{R} est dite transitive si, lorsque x est en relation avec y, alors y ne peut pas être en relation avec x (sauf si x=y). L'assertion proposée est vraie ou fausse?
 - Q. 70. Une application bijective est surjective. L'assertion proposée est vraie ou fausse?
 - Q. 71. $\sin : \mathbb{R} \longrightarrow [-1, 1]$ est surjective. L'assertion proposée est vraie ou fausse?
 - Q. 72. \subset est une relation d'ordre dans $\mathcal{P}(E)$. L'assertion proposée est vraie ou fausse?